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a b s t r a c t

This paper introduces a new formulation of high frequency time-harmonic scattering prob-
lems in view of a numerical finite element solution. It is well-known that pollution error
causes inaccuracies in the finite element solution of short-wave problems. To partially
avoid this precision problem, the strategy proposed here consists in firstly numerically
computing at a low cost an approximate phase of the exact solution through asymptotic
propagative models. Secondly, using this approximate phase, a slowly varying unknown
envelope is introduced and is computed using coarser mesh grids. The global procedure
is called Phase Reduction. In this first paper, the general theoretical procedure is developed
and low-order propagative models are numerically investigated in detail. Improved solu-
tions based on higher order models are discussed showing the potential of the method
for further developments.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The purpose of this paper is to investigate simple evolution models for exterior scattering problems around convex obsta-
cles, and use these models to reduce the pollution error in the finite element solution of time-harmonic scattering problems.

The pollution error finds its origin in the oscillatory nature of the solution of such scattering problems, and is deeply
linked to the loss of stability of the Helmholtz operator for high wavenumbers. As evidenced by Babuska et al. [31,22,23],
the contribution of the pollution error to the overall error in the finite element solution of scattering problems thus becomes
predominant at high wavenumbers k. This requires to increase the mesh density faster than the wavenumber to maintain a
prescribed accuracy [33], and leads to intractable computational costs at very high frequencies, i.e., when the wavelength
k ¼ 2p=k is much smaller than the characteristic length of the geometrical structure.

Several techniques have been proposed during the last decade to overcome this problem: hp finite element methods, sta-
bilized Galerkin finite element methods, multi-scales techniques, wave-based discretization techniques, etc. We cannot
mention here the numerous papers related to all these improvements and instead refer the reader to the recent review
by Thompson [33] for further details and references.
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A common point between all these techniques lies in the fact that information about the scattering problem is incorpo-
rated into the finite element procedure. One popular approach is to replace the standard polynomial basis functions by plane
wave functions [26,19]. Another viewpoint [9–12,7,8,15,17,34], which we adopt in this paper, is to approximate the phase of
the solution and use this phase to reformulate the problem in terms of a slowly oscillatory envelope. If we denote the solu-
tion of the original scattering problem by u, this approach thus involves a two-fold solution process:

(1) find an approximation e/ of the phase / of u in the whole computational domain;
(2) use e/ to solve the scattering problem in terms of a new, slowly varying unknown.

This has the advantage that the resulting formulation can be easily coded into a classical finite element solver and does
not require any integration of new basis functions. Moreover, this technique is not restricted to the finite element method,
and can be used in other numerical schemes like finite difference, integral or spectral methods.

In this paper, we propose an original approach for solving point (1) above, i.e., to find an approximation of the phase of the
highly oscillatory solution in the computational domain. Our approach is based on three main ingredients:

(1.a) first, we build an initial condition on the surface of the scatterer (that we call the starter);
(1.b) then, we construct an approximate pseudodifferential evolution operator (that we call the propagator) to extend the

starter into the exterior computational domain;
(1.c) and finally, to reduce the computational cost, we localize the propagator using purely differential operators.

We then solve an alternative variational problem, equivalent to the original one, by using the phase e/ of the approximate
solution. The new unknown is expected to oscillate less than the original one, which permits to significantly reduce the pol-
lution error, or, alternatively, to obtain the same accuracy as the classical finite element method with coarser discretizations.
We call the resulting technique the Phase Reduction procedure (or PR for short). It can be seen as a numerical extension of
asymptotic approaches like the WKB approximation [13], with the added advantage that, provided that the finite element
mesh resolves the amplitude, the method results in a convergent solution of the original problem – even if the phase approx-
imation is inaccurate. To some extend, the PR procedure can also be seen as a general extension of the concept of Wave Enve-
lope introduced by Baumeister [9–12] for treating particular guided waves propagation problems, and later used by Astley
and Eversman [7,8], for acoustical radiation.

To show the potential our approach, in this paper we mainly consider the lowest-order (and computationally simplest)
models associated with points (1.a), (1.b) and (1.c) above. Even with these low-order approximations, we will show that sig-
nificant improvements can be achieved on general scattering problems around convex obstacles. Improvements that can be
expected at very high frequencies using higher order models are also briefly presented.

The paper is structured as follows: in Section 2 we outline our phase reduction strategy on a simple one-dimensional scat-
tering problem. In Section 3, we present the usual variational formulation for higher-dimensional scattering problems, using
a Bayliss–Gunzburger–Turkel-like radiation condition to truncate the infinite domain. The phase reduction procedure for
higher-dimensional scattering problems is then detailed in Section 4, and Section 5 provides numerical simulations to show
the improvements related to the phase reduction approach. In Section 6, we show the improvements that can be expected at
very high frequencies by using higher order models.

2. The one-dimensional case: A simple and explicit example

Assume that we wish to solve the one-dimensional Neumann scattering problem
@2
x uþ k2u ¼ 0; in Xb ¼�0;1½;
@nC u ¼ ik; at C ¼ f0g;
@xu� iku ¼ 0; at R ¼ f1g:

ð1Þ
The above boundary-value problem corresponds to the solution of the scattering of a one-dimensional incident plane
wave by the left half-space, introducing an exact transparent boundary condition on the fictitious boundary R ¼ f1g. This
non-reflecting boundary condition is given through the Dirichlet-to-Neumann (DtN) operator K ¼ ik on R by the relation:
@xu ¼ Ku.

2.1. The pollution problem

It is well-known since the pioneering works of Babuska and Ihlenburg [22,23,33,21] that the finite element approxima-
tion of the solution uðxÞ ¼ eikx of problem (1) suffers from numerical pollution, especially for large wavenumbers k. Essen-
tially, this is related to the in adequacy of the polynomial finite element basis used to represent the unknown wavefield.
To clarify this problem, we consider the covering of the computational bounded domain Xb using Nh uniform segments of
length h, setting h ¼ 1=Nh. We report in Fig. 1 the exact solution u and its linear finite element approximation uh for
k ¼ 40. We denote by nk ¼ k=h the density of discretization points per wavelength k. As we can see in Fig. 1, a density



Fig. 1. Real part of the scattered field at a frequency k ¼ 40 for a density of discretization points nk ¼ 8. The pollution effect can be observed on the classical
FEM approach but is avoided by the PR-FEM formulation.
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nk ¼ 8 is too small to compute an accurate approximate solution. The usual rule of thumb of ‘‘10 points per wavelength” is
generally not sufficient and a mesh refinement is required, resulting in an added computational cost. This loss of accuracy is
known as pollution and translates the accumulation of numerical phase error over the computational domain inherent in the
FEM. Classical error estimates can be derived (see e.g. [33,21]) to quantify this pollution error, which becomes predominant
compared to the approximation error for large wavenumbers.

2.2. A possible strategy to reduce the pollution error

To partially avoid the pollution error, we investigate in this paper the procedure based on the two following successive
steps:

(1) The first step consists in determining an approximate solution
eu ¼ eAðxÞeike/ðxÞ ð2Þ

in the whole computational domain Xb as the solution of an evolution equation (the propagator) in the x-direction,
with an initial condition to be determined on C (the starter); once the approximate field (2) is known in the volumetric
computational domain, we extract its phase e/ðxÞ.
(2) The second step consists in solving a new variational formulation for the approximate slowly varying complex-valued
envelope AðxÞ of the true solution uðxÞ ¼ AðxÞeike/ðxÞ, setting
AðxÞ ¼ AðxÞeikð/ðxÞ�e/ðxÞÞ; ð3Þ

where A and /, respectively, designate the true real-valued amplitude and phase of u:

uðxÞ ¼ AðxÞeik/ðxÞ: ð4Þ
Following this strategy, the pollution error is expected to be reduced since an approximate a priori phase determination
leads to the computation of a slowly varying field A.

2.2.1. Computing the approximate solution eu
The solution of step (1) is split in two distinct problems:

(1.a) the construction of the starter;
(1.b) the obtention of the propagator.
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Point (1.a) is solved through the following considerations. From the nature of the scattering problem (1), the Neumann
boundary condition is given. To get an approximate starting field, we apply the transparent boundary condition directly
at the physical boundary C. In other words, we consider the so-called On-Surface Radiation Condition (OSRC) [3,25] solution
in the one-dimensional case. In our simple situation, this condition is exact and gives the initial wavefield eu0 as
eu0 ¼ euð0Þ ¼ ðikÞ�1
@nC u ¼ 1 at C: ð5Þ
Interpreting x as a time variable, Eq. (5) is an initial condition.
In the case of a Dirichlet boundary condition u ¼ f on C, the initial condition is directly given by eu0 ¼ f on C and hence

does not require the help of the OSRC technique [17].
Let us now consider point (1.b). To construct the propagator, we rewrite the Helmholtz equation under its (exact) factor-

ized form
ð@2
x þ k2Þu ¼ ð@x þ iP�Þð@x þ iPþÞu ¼ 0; for x P 0; ð6Þ
setting P� ¼ �k. The solution of the evolution equation
@xeu þ iPþeu ¼ 0 ð7Þ
corresponds to the forward propagative wave and is considered as our propagator. The solution eu of (7) with the initial con-
dition (5) can be directly obtained as eu ¼ eikxeu0 ¼ eikx.

The procedure consisting in writing an approximate forward propagating model is closely related to the techniques em-
ployed in optics, underwater or electromagnetic wave propagation and better known under the denominations respectively
of Beam Propagation Methods (BPM) [28] or parabolic equations [27]. As discussed next, the situation is more complicated in
higher dimensions since the wavefield propagates from a (usually) curved surface C.

2.2.2. Computing the true solution u
The second step of the algorithm consists in solving an equation for A defined by:
A ¼ e�ike/u: ð8Þ
Again, in the considered configuration, we know that uðxÞ ¼ eikx and consequently that AðxÞ ¼ 1 since e/ðxÞ ¼ x. Therefore,
A is a slowly varying envelope and the polynomial basis functions lead to an optimal numerical computation. However, to
explain in detail the real strategy considered for higher dimensions, we rather proceed as follows. The variational formula-
tion of problem (1) is given by: find u 2 H1ðXbÞ such that
Z

Xb

@xu@x �v � k2u�v
n o

dx� ikðu�vÞð1Þ ¼ �ðg�vÞð0Þ; 8v 2 H1ðXbÞ: ð9Þ
Since A is defined by (8), with e/ known from step (1), we replace u in the weak formulation (9) using u ¼ eike/A, and we
choose some test-functions v defined by v ¼ eike/B. Using these relations, we get the new formulation: find A 2 H1ðXbÞ such
that
 Z

Xb

@xA@x
�Bþ ik@x

e/ðA@x
�B� �B@xAÞ � k2ð1� j@x

e/j2ÞA�B
n o

dx� ikðA�BÞð1Þ ¼ �ðf �BÞð0Þ; 8B 2 H1ðXbÞ; ð10Þ
where f ð0Þ ¼ e�ike/ðxÞjx¼0 gð0Þ ¼ ik. This formulation is nothing else than the weak formulation of the initial boundary-value
problem (1) with A as the new unknown. The weak formulation (10) is easy to implement in a finite element code and only
requires some elementary modifications of the initial formulation (9). The FEM solution to formulation (10) will be referred
to as Phase Reduction FEM (PR-FEM) in the sequel. We present in Fig. 1 the computed discrete finite element solution based
on A using (10). We observe that we avoid any pollution fundamentally because we compute a non-oscillatory solution. The
polynomial representation is therefore optimal.

The goal of the following sections is to extend this approach to scattering problems in higher dimensions, where the com-
putation of eu can only be realized in an approximate way. In this case, we cannot completely avoid the pollution error in the
finite element solution, but we can expect to reduce it significantly at high wavenumbers. Furthermore, the extension to var-
iable wavenumbers can also be considered. Indeed, the construction based on pseudodifferential operators and presented in
the next section enable one to consider Helmholtz equations with variable coefficients.

3. The classical variational formulation for higher dimensions

We investigate the numerical solution of the time-harmonic acoustic scattering problem of a plane wave uincðxÞ ¼
eika � x; jaj ¼ 1, by a sound-hard or a sound-soft convex obstacle X� � Rd; d > 1, with a C1 closed boundary C. We set
Xþ :¼ Rd nX� as the exterior domain of propagation associated with X�. The spatial variable is denoted by
x ¼ ðx1; . . . ; xdÞ. The boundary-value problem reads:



3118 X. Antoine, C. Geuzaine / Journal of Computational Physics 228 (2009) 3114–3136
Duþ k2u ¼ 0; in Xþ;

@nC u ¼ g :¼ �@nC uinc or u ¼ f :¼ �uinc; on C;

lim
jxj!þ1

jxjðd�1Þ ru � x
jxj � iku

� �
¼ 0:

ð11Þ
The operator D is the Laplacian operator and a � b designates the hermitian inner product of two d-dimensional complex-
valued vector fields a and b. The outwardly directed unit normal vector to X� is nC. In a suitable functional setting, this prob-
lem is known to be well-posed [16].

Let us begin by introducing the classical weak formulation and the finite element method to solve (11). We consider a
smooth convex fictitious boundary R enclosing the scatterer X� and we set Xb as the bounded computational domain delim-
ited by C and R. Since our aim here is not to investigate all the available solutions to bound the computational domain, we
only consider the second-order Bayliss–Gunzburger–Turkel-like (BGT2-like) Artificial Boundary Condition (ABC) derived in
[4]. Other truncation techniques like PML [14,20] could also be used and adapted as easily to the proposed strategy. The
BGT2-like ABC on R is given by
@nR u ¼ Bu; on R; ð12Þ
where B is a second-order symmetrical tangential boundary operator and nR designates the outwardly directed unit normal
vector to R. To simplify the notations, we keep on denoting by u the solution of the approximate model with the BGT2-like
ABC (see system (16)) even if this function is obviously different from the solution of the initial problem (11). The boundary
operator B is given by
Bu ¼ divRðArRuÞ � bu; on R; ð13Þ
where the operator divR is the surface divergence of a tangential complex-valued vector field and rR is the surface gradient
operator of a complex-valued scalar surface field, all these quantities being defined over R. Furthermore, the operator A is the
complex-valued tensor field given by
A ¼ � 1
2ik

Iþ iR
k

� ��1

ð14Þ
and b is the complex-valued scalar function
�ikþHþ i
2k

1þ 2H
k

� ��1

ðK �H2Þ � DCH
4k2 : ð15Þ
In the above notations, the operator I is the identity operator of the tangent plane and R is the curvature tensor. We de-
note by H and K, respectively, the mean and Gauss curvatures. The Laplace–Beltrami operator is DRu ¼ divRðrRuÞ. It results
that the truncated boundary-value problem is given by
Duþ k2u ¼ 0; in Xb;

@nC u ¼ g or u ¼ f ; on C;

@nR u ¼ Bu; onR:

ð16Þ
For the Neumann problem, the variational formulation consists in computing u 2 H1ðXbÞ such that
aðu;vÞ ¼ ‘ðvÞ; ð17Þ
for any test-function v 2 H1ðXbÞ. The sesquilinear form að�; �Þ is defined by
aðu;vÞ ¼ ðru;rvÞ0;Xb
� k2ðu; vÞ0;Xb

þ ðArRu;rRvÞ0;R þ ðbu;vÞ0;R ð18Þ
and the linear form ‘ appearing in the right-hand side is
‘ðvÞ ¼ �ðg; vÞ0;C: ð19Þ
We define ð�; �Þ0;D as the hermitian inner product of two complex-valued square-integrable functions u and v of L2ðDÞ
ðu; vÞ0;D ¼
Z

D
u�vdD; ð20Þ
where D specifies the integration domain. In the case of two complex-valued vector fields u and v defined on D, the inner
product is
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ðu;vÞ0;D ¼
Z

D
u � �vdD: ð21Þ
The finite element solution consists in introducing a covering Xh of Xb using some tetrahedrons K : Xh ¼ [K2Kh
K , whereKh

designates a triangulation of the domain. The corresponding interpolated boundaries associated with C and R are, respec-
tively, denoted by Ch and Rh. The p-finite element version of (17) yields the discrete formulation: find uh 2 Vh such that
ahðuh;vhÞ ¼ ‘hðvhÞ; ð22Þ
for any test-function vh of Vh, setting
ahðuh;vhÞ ¼ ðruh;rvhÞ0;Xh
� k2ðuh;vhÞ0;Xh

þ ðAhrRh
uh;rRh

vhÞ0;Rh
þ ðbhuh;vhÞ0;Rh

ð23Þ
and
‘hðvhÞ ¼ �ðgh;vhÞ0;Ch
: ð24Þ
The classical finite element space of order p is given by
Vh :¼ fvh 2 C0ðXhÞ=vhjK 2 PpðKÞ;8K 2 Khg; ð25Þ
where Pp denotes the space of polynomials of degree less than or equal to p. The approximate fields Ah and bh are computed
by some suitable schemes based on the surface mesh. We refer to [1] for implementation details. Finally, the solution of (22)
leads to the solution of a linear system
½ah�uh ¼ bh; ð26Þ
where ½ah� is a non-hermitian complex-valued matrix of size Nh � Nh;uh and bh are two complex-valued vectors of CNh , and
Nh is the number of degrees of freedom associated with the finite element approximation. The whole procedure is referred to
as FEM in what follows.

Concerning the Dirichlet problem, a similar weak formulation can be obtained in a classical way. We do not detail here
this point which is immediate.

4. The phase reduction formulation for higher dimensions

We now detail our strategy to solve the two successive steps outlined in the introduction for higher dimensions. Point (1)
is developed in Section 4.1 (more specifically, Section 4.1.1 deals with the proposition of a starter, i.e., Point (1.a), while Sec-
tion 4.1.2 concerns the construction of the propagator, i.e., Point (1.b)). For now we only consider the lowest-order propa-
gator and therefore Point (1.c) is direct – improvements will be considered later in Section 6. Point (2) is developed in
Section 4.2.

We focus the presentation on the sound-hard case, i.e., on the problem with a Neumann boundary condition. Like in the
one-dimensional case, the PR-FEM for the Dirichlet problem is obtained in a similar way, with the added simplification that
the starter is obtained immediately from the boundary condition. Preliminary results for the two-dimensional Dirichlet scat-
tering problem were presented in the short paper [17].

4.1. Computing the approximate solution eu
4.1.1. Construction of the initial condition eu0 (starter)

In the one-dimensional case, we have seen that the construction of the initial condition is essentially based on the knowl-
edge of the Dirichlet-to-Neumann (DtN) operator K on C. This approach, called the On-Surface Radiation Condition method,
has been formally introduced in the middle of the 1980s by Kriegsmann et al. [25] for the computation of an electromagnetic
wave by a perfectly conducting body. Since then, numerous improvements and generalizations have been developed both in
acoustics and electromagnetism. We restrict our presentation here to the use of the OSRC method applied to the construction
of the initial condition at high frequencies. We refer to [3] for a recent presentation of the OSRC approach and its applica-
tions. An interesting aspect of the OSRC approach is that the construction of the approximate solution is not based on only
taking into account the Helmholtz operator but rather on considering the complete scattering boundary-value problem. In
this sense, the OSRC method provides an approximate solution which has a behavior close to the true solution and can be
seen as a numerical asymptotic solution for a general scattering problem.

The accuracy and efficiency of these techniques are deeply related to the way of constructing the approximation of the
DtN map. Various choices exist and are in some way all related to a subjacent (local or microlocal) asymptotic analysis.
Since we wish to solve a high frequency scattering problem, we choose the square-root OSRC proposed in [5]. For a given
normal derivative trace on C, this operator expresses an approximation u of the exact trace of the solution u through the
relation
@nC u ¼ Ku; on C; ð27Þ
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where K is the pseudolocal OSRC operator given by
K ¼ ik
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ X

p
: ð28Þ
In our case, we will set eu0 ¼ u. The symmetrical partial differential operator X is
X ¼ divCðk�2
e rC�Þ; ð29Þ
defining the complex wavenumber ke as ke ¼ kþ ie, with e ¼ 0:4k1=3H2=3
C , where HC is the mean curvature on C. Since the

operator is non-local like in the integral equation approach, its numerical inversion is computationally expensive. However,
its simulation can be efficiently carried out by using a suitable complex Padé approximant of the square-root

ffiffiffi
z
p

of a complex
number z. The principal determination of the square-root is considered with a branch-cut along the negative real axis. Fol-
lowing [5], we use the approximation described in [29]
ffiffiffiffiffiffiffiffiffiffiffi

1þ z
p

	 eih=2RNp ðe�ihð1þ zÞ � 1Þ ¼ A0 þ
XNp

j¼1

Ajz
1þ Bjz

; ð30Þ
setting
Aj ¼
e�ih=2aj

ð1þ bjðe�ih � 1ÞÞ2
and Bj ¼

e�ihbj

1þ bjðe�ih � 1Þ ; ð31Þ
and A0 ¼ eih=2RNp ðe�ih � 1Þ. The function RNp designates the usual real Padé approximant of order Np of the square-root defined
by
 ffiffiffiffiffiffiffiffiffiffiffi

1þ z
p

	 RNp ðzÞ ¼ 1þ
XNp

j¼1

ajz
1þ bjz

; ð32Þ
with the coefficients
aj ¼
2

2Np þ 1
sin2 jp

2Np þ 1

� �
and bj ¼ cos2 jp

2Np þ 1

� �
: ð33Þ
In the sequel, we take the optimal values Np ¼ 8 and h ¼ p=3 considered in [5]. The important feature in using a Padé
interpolant is that the approximate and accurate application of the operator (28) to a given surface function w can be realized
through the solution of ðNp þ 1Þ complex-valued coefficients Helmholtz-type partial differential equations over C. Indeed,
we can reformulate the problem of evaluating W ¼ Kw as the application of the Padé-type operator to a given datum w apply-
ing the following procedure: solve the Np surface partial differential equations with respect to the auxiliary unknowns wj

through the variational formulation
Z
C

Bj

k2
e

rCwj � rCu� wjudCþ
Z

C
wudC ¼ 0; 1 6 j 6 Np; ð34Þ
and next compute W variationally using
Z
C
WudC ¼ ikA0

Z
C

wudC� ik
XNp

j¼1

Z
C

Aj

k2
e

rCwj � rCudC: ð35Þ
In the above relations, u designates a suitable test-function defined on C. In our case, we adapt easily this procedure to
Eq. (27) by rewriting the pseudodifferential equation as
Z

C
KgudC ¼

Z
C

k2

k2
e

rCeu0 � rCu� k2eu0udC: ð36Þ
This formulation only requires the solution to an additional surface partial differential equation over C. All these equa-
tions can be solved efficiently [5] by using a discretization based on a surface finite element method on Ch. Let us introduce
NCh

as the number of degrees of freedom arising in the surface finite element method. Then, the resulting linear systems
defining the OSRC through the Padé approximants can be solved at a linear cost according to NCh

by a preconditioned ILUT
Krylov iterative solver [30]. All this process yields the efficient construction of the approximate initial condition eu0 on the
boundary C. The theory of OSRCs assumes that X� is a convex domain [3]. Some coupling procedures exist to extend its
application range to non-convex bodies [2], which we won’t consider here. Finally, an explicit analytical starter eu is obtained
if one uses the lowest-order approximation called Sommerfeld approximation
eu ¼ �i@nC u=k; on C: ð37Þ
This approximation will be used in the numerical tests presented in Section 5. We will see that it yields interesting but
also limited accuracy improvements for high wavenumbers and/or coarse meshes. Section 6 will reveal the interest of
numerically using high-order models like the Padé model introduced above if high-order propagators are considered at
the same time.
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Once the surface field eu0 is known on C, the corresponding surface phase function e/ can be computed. This is of interest
in the sequel since we use a low-order propagation model giving an explicit phase function e/ over the computational do-
main once its trace is known (through Eq. (50)). If one uses the solution which consists in writing the phase at a surface point
using the relation
Fig. 2.
unwrap
e/ ¼ 1
ik

log
eu0eA

� �
; for eu0 – 0; ð38Þ
the resulting calculation yields a discontinuous determination of the phase since the exponential function is a periodic func-
tion. A test example of such a problem is given in Fig. 2 in the simple case of a circular cylinder at k ¼ 10 for the Neumann
boundary condition. This difficulty is known as the phase unwrapping problem. This is an important point to deal with in our
approach because the involvement of a discontinuous phase in the weak variational formulation on A (see for example Eqs.
(51) and (52) would clearly lead to difficulties in the finite element solution. To solve this problem, we use the following
strategy. Consider the known field eu0 and differentiate the relation eike/ ¼ eu0=eA assuming that the surface field is not equal
to zero. Taking the real part of the equation, one gets
rC
e/ ¼ F :¼ R

1
ik

eAeu0
rC

eu0eA
� � !

; ð39Þ
where the surface vector field F is known. If one fixes the value of e/ at an arbitrary surface point x
 where eu0 is non-zero and
one takes the surface divergence of Eq. (39), then, a continuous determination of the phase e/ can be computed as the unique
solution to the well-posed surface partial differential equation
�DC
e/ ¼ �divCF; on C;e/ðx
Þ ¼ arg eu0ðx
ÞeAðx
Þ

� �
:

8><>: ð40Þ
The numerical solution can be easily obtained by a surface finite element method, similarly to the OSRC technique, by the
formulation
Z

C
rC
e/ � rCudC ¼ �

Z
C

divCðFÞudC; ð41Þ
for some test-functions u and fixing the value of e/ at a surface point x
. This process yields a continuous phase e/ over the
surface C, as shown on Fig. 2 where we see the unwrapped version of the phase for our previous example, computed using
the high-order OSRC solution. We also see the accuracy improvement related to the choice of the OSRC.
Surface phase e/ for the Neumann problem and the unit circular cylinder at k ¼ 10: exact solution, Sommerfeld solution, high-order OSRC and
ped high-order OSRC solutions.
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4.1.2. Construction of the evolution equation (propagator): General approach and low-order approximation
The next step of the approach consists in developing an approximate forward propagating equation called the propagator.

Unlike the one-dimensional case, the situation is much more complex because of the boundary. We propose here a general
construction of an approximate DtN map using pseudodifferential operators theory and elements developed in [4]. We will
use its lowest-order approximation for the PR-FEM computations performed in Section 5 but will show in Section 6 that it is
crucial to consider the proposed high-order models to investigate improved solutions at high frequency and for coarse
meshes.

Let us consider a point x in Xb (or more generally in Xþ). Since X� is convex, any observation point x can be projected onto
C as a unique point x0 ¼ pCx 2 C, where pC is the projection operator onto C. Let us introduce r ¼ x0x and r ¼ krk. The out-
wardly directed unit normal vector to C at point x0 is given by nCðx0Þ ¼ r=r (see Fig. 3). Since C is a compact submanifold of
Rd, a local coordinates system at a point x0 of C can be chosen. Let us introduce the tangential variable s ¼ ðs1; s2Þ and the
radial variable r along nCðx0Þ, setting r ¼ 0 at C ¼ C0 and Cr for the parallel surface. We choose an orthogonal coordinates
system on C. The covariant basis ðs1; s2Þ of the tangent plane Tx0 ðCÞ compatible with the orientation of nðx0Þ is better known
as the principal basis, where s1 and s2 are the principal directions of curvatures to the surface. Setting RC as the curvature
tensor of the tangent plane at a given point of the surface, the principal curvatures j1 and j2 of C satisfy: RCsb ¼ jbsb, for
b ¼ 1;2, and the mean curvature HC ¼ traceðRCÞ=2. Introducing the functions hb ¼ 1þ rjb; b ¼ 1;2, we get the expression of
the Helmholtz operator in generalized coordinates
Lðr; s; @r; @sÞu ¼ @2
r þ 2Hr@r þ h�1

1 h�1
2 @s � ðh2h�1

1 @s1 ;h1h�1
2 @s2 Þ þ k2

; ð42Þ
setting Hr ¼ ðh�2
1 j1 þ h�2

2 j2Þ. Now adapting the techniques used in [4], we prove the existence and uniqueness of two
pseudodifferential operators P� such that the equation
ð@r þ iPþÞeu ¼ 0; on Cr ð43Þ
characterizes the forward propagating part of the wavefield. The other operator P� yields the reentrant part of the field to Cr .
Let us introduce the total symbols p�ðr; s; nÞ ¼ rP� of P� ¼ P�ðr; s; @sÞ, setting n ¼ ðn1; n2Þ as the Fourier covariable of s. These
two symbols admit a unique asymptotic expansion in homogeneous symbols p��j

n o
jP�1

of order �j asX

p� �

jP�1

p��j; ð44Þ
where the functions p��j satisfy: p��jðr; s; knÞ ¼ k�jp��jðr; s; nÞ; 8k > 0 (see [32] for the definition of �). The uniqueness of the
expansion is fixed through the condition on the principal symbol
p�1 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � knk2

q
; ð45Þ
setting knk2 ¼ h�2
1 n2

1 þ h�2
2 n2

2. Now if one considers for example the approximation of (43) by the equation
ð@r þ iOp pþ1
� �

Þeu ¼ 0; on Cr ; ð46Þ
we obtain a non-local propagation equation to solve (OpðrÞ designates the pseudodifferential operator with symbol r).
Using the symbol (45) leads to a correct computation of propagative modes but can exhibit a loss of accuracy for high-order
spatial frequencies n such that knk 	 k since it is singular. A regularization (like in the OSRC technique) of pþ1 must be con-
sidered. In the same spirit as in [5], we take:
Fig. 3. Illustration of the notations used in the construction of the forward propagating model.
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pþ1;g ¼ �k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� knk

2

k2
g

vuut ; ð47Þ
setting kg ¼ kþ ig, with g ¼ 0:4k1=3H2=3
r (where Hr ¼ h�2

1 j1 þ h�2
2 j2

� �
is the local mean curvature of the front Cr), and the

associated propagator
ð@r þ iOp pþ1;g
� �

Þeu ¼ 0; on Cr: ð48Þ
Directly using (47) and (48) would be computationally expensive since it is a pseudodifferential non-local equation. In
this paper, we restrict our numerical implementation to the simplest low-order model considering a zeroth-order approx-
imation of the principal symbol corresponding to n ¼ 0. A higher order localization process based for example on a second-
order Taylor expansion for small values of knkwould yield a second-order partial differential paraxial wave equation valid in
a cone of aperture about 15 degrees in the normal direction (more details can be found in the literature about parabolic
equations models – see e.g. [27]). Considering hence the rough approximation:
ð@r � ikÞeu ¼ 0; on Cr ; ð49Þ
we get the solution: euðr; sÞ ¼ eikreuð0; sÞ, or in other words euðxÞ ¼ euðx0Þeikkx�x0k. Since the phase e/ðx0Þ is known at x0 by using
the OSRC approximation, the phase at point x of Xþ is approximated by
e/ðxÞ ¼ e/ðx0Þ þ kx� x0k: ð50Þ
Even if we only use a very simple approximation of (43), our a priori complex approach is constructive and can be im-
proved following two directions. The first one consists in using some real parabolic equations using for example the first
symbol pþ1 and a Padé expansion to localize the resulting pseudodifferential operator (see Section 6). The second direction
consists in incorporating more terms in the asymptotic expansion, e.g. computing pþ0 (and next using some approximations,
e.g. for n ¼ 0). All the corrective symbols can be obtained through some adaptations of the computations performed in [4].
However, this also implies some difficulties for the Phase Reduction approximation since special structured meshes must be
used following the normal directions to solve the resulting equations. Another interesting point of our approach is that the
previous construction can be adapted to variable coefficients problems like inhomogeneous Helmholtz equations. All these
more advanced points are beyond the scope of the present paper and are currently being investigated.

4.2. Computing the true solution u

Since e/ has now been computed, we follow the same path as in the one-dimensional case. Replacing u by Aeike/ in (18)
and taking some test-functions v ¼ Beike/ , we obtain the alternative formulation: find A 2 H1ðXbÞ such that
AðA;BÞ ¼ LðBÞ; ð51Þ
for all B 2 H1ðXbÞ. The sesquilinear form is given by
AðA;BÞ ¼ ðrA;rBÞ0;Xb
þ ikððAre/;rBÞ0;Xb

� ðrA;Bre/Þ0;Xb
Þ � k2ðð1� kre/k2ÞA;BÞÞ0;Xb

ðArRA;rRBÞ0;R
þ ikðððArR

e/ÞA;rRBÞ0;R � ðArRA;BrR
e/Þ0;RÞ þ k2ððArR

e/;rR
e/ÞA;BÞÞ0;R þ ðbA;BÞ0;R ð52Þ
and the linear form L by
LðBÞ ¼ �ðf ;BÞ0;C ð53Þ
with f ¼ ge�ike/ and e/ given. Even if the formulation seems complicated at first sight, all the quantities can be easily com-
puted by using assembling procedures available in most basic finite element codes.

5. Numerical performance of the lowest-order model

To show the improvements that can be expected from our approach using the lowest-order model based on Eqs. (37) and
(50), we begin by detailing in Section 5.1 a modal study for the sound-hard disk. Full plane wave problems are considered for
the Neumann problem in Section 5.2 and for the Dirichlet problem in Section 5.3. All results were obtained using linear (P1)
triangular finite elements and uniform meshes. The discretization density is defined as nk ¼ k=h, where h measures the size
of the triangles. The linear systems were solved with a sparse direct solver.

For a given approximated solution f calcðxÞ; x 2 Xb, with exact counterpart f exactðxÞ, we define the relative L2ðXbÞ-error as:
e2ðf Þ :¼
Z

Xb

jf calcðxÞ � f exactðxÞj2 dx

( )1=2, Z
Xb

jf exactðxÞj2 dx

( )1=2

: ð54Þ
In all the following examples, f exact denotes the exact solution of the problem with the BGT2 ABC, so that the error is not
influenced by the non-perfectly transparent boundary condition.
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5.1. Scattering by a sound-hard circular cylinder: mode-by-mode analysis

A first example concerns the scattering problem by a circular cylinder X� ¼ D0 of radius R0 centered at the origin. Its
boundary C is therefore given by the circle C ¼ C0. We also consider that the fictitious boundary R ¼ C1 is a larger circle
of radius R1 > R0, again centered at the origin. As a consequence, the bounded computational domain Xb is the crown delim-
ited by the boundaries C0 and C1.

If we now consider an incident wavefield fixed by a mode of order m, that is
uinc
m ðxÞ ¼ JmðkrÞeimu; m 2 Z; ð55Þ
in the polar coordinates system ðr;uÞ, then, the exact exterior modal solution to the scattering problem by the sound-hard
circular cylinder D0 is given by
umðxÞ ¼ �
J0mðkR0Þ

H0ð1Þm ðkR0Þ
Hð1Þm ðkrÞeimu; r P R0; m 2 Z: ð56Þ
In the case where we truncate the exterior problem using the BGT2-like radiation condition (13)–(15), the analytical exact
solution reads
uexact
m ðxÞ ¼ amHð1Þm ðkrÞ þ bmHð2Þm ðkrÞ

� �
eimu; r P R0; m 2 Z; ð57Þ
since spurious reflection occurs at C1. The coefficients am and bm are given by solving a 2� 2 linear system of equations
imposing the Neumann boundary condition at C0 and the ABC (13)–(15) at C1. This gives the following expressions:
am ¼ �
A22J0mðkR0Þ

D
; bm ¼

A21J0mðkR0Þ
D

; ð58Þ
setting D ¼ A11A22 � A21A12,
A11 ¼ H0
ð1Þ

m ðkR0Þ; A21 ¼ kH0
ð1Þ

m ðkR1Þ � BmHð1Þm ðkR1Þ;

A12 ¼ H0
ð2Þ

m ðkR0Þ; A22 ¼ kH0
ð2Þ

m ðkR1Þ � BmHð2Þm ðkR1Þ;

Bm ¼ � am
m2

R2
1
þ bm

� �
; am ¼ � 1

2ik 1þ i
kR1

� ��1
;

bm ¼ �ikþ 1
2R1
þ 1

8iR1ð1þkR1Þ
:

8>>>>>>>><>>>>>>>>:
ð59Þ
Hence, being able to compute both the exact solutions to the exterior and truncated problems allow us to separate in a
numerical study (i) the analytical error coming from the domain truncation using the ABC (13)–(15) and (ii) the error linked
to the numerical approximation of the truncated problem e.g. by a finite element method. Therefore, the convergence of the
numerical approximation is only visible from the exact solution uexact

m given by (57)–(59) which is now considered as our ref-
erence solution for R0 ¼ 1 and R1 ¼ 2. Concerning the PR-FEM, we use the exact phase on C, i.e., /ðhÞ ¼ cmh. The reason is
that the unwrapping technique cannot be applied since / is not a periodic function on ½0;2p� (unlike for the plane wave
problem).

We present in Fig. 4 the real parts of the wavefield uh and Ah computed, respectively, by the FEM and the PR-FEM. We also
report the absolute error compared to the exact analytical fields u ¼ uexact

m and A. The wavenumber is fixed to k ¼ 25 and the
density to nk ¼ 20. From these computations, we observe that the field Ah oscillates much less than uh. As expected, the accu-
racy of the FEM for computing Ah is higher than for uh since less pollution arises. The mode m is propagative because m 6 k.
This means that the rough approximation (50) is certainly not so bad. In Fig. 5, we draw the evolution of the error e2 for
k ¼ 50 according to the mesh refinement for the three modes m ¼ 0;m ¼ 25 (both purely propagative) and m ¼ 50 (which
is at the transition between the region of propagative and evanescent modes). We see that the phase approximation gives an
interesting improvement for the propagative part but the accuracy improvement is affected for higher harmonics where an
approximate phase is much more complicated to obtain. The importance of this accuracy degradation is however moderated
in practice by the fact that the solution of general scattering problems (e.g. under plane wave incidence) is a superposition of
harmonics. We will see in Section 6 that higher order propagative models can capture correctly the oscillations linked to
large modes even at high frequencies. We also see in Fig. 5 that PR-FEM converges with the meshsize as expected for linear
FEM. Second-order FEM have also been tested and lead to the expected convergence. Finally, Fig. 6 shows the error behavior
of the different methods for the modes m ¼ 0 and m ¼ k with respect to the wavenumber. We get a higher accuracy for the
PR-FEM which is again penalized for higher order harmonics m.

5.2. Scattering by a sound-hard circular cylinder: plane–wave incidence

We consider an incident plane wave eikx. From now on, the PR-FEM uses the lowest-order (Sommerfeld) OSRC approxi-
mation (37). In this case, the phase e/ of eu is actually the same as the phase of uinc and is thus the same as the phase of
the Dirichlet boundary condition. However, for completeness, the unwrapping phase technique is used to get the continuous



Fig. 4. Neumann problem: real part of uh and Ah and the associated errors for the mode m ¼ 10. The wave number is k ¼ 25 and the density is nk ¼ 20.

Fig. 5. Neumann problem: evolution of the error e2 for several modes at k ¼ 50 according to the density of discretization nk .
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Fig. 6. Neumann problem: evolution of the error e2 for the modes 0 and k with respect to the wave number k, setting nk ¼ 10.
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extension of e/. The reason why we do not consider higher order OSRCs here is that the accuracy improvement of the starter
would not be visible if high-order exterior propagators are not used at the same time (this point will be analyzed in Section 6
on a simple analytical problem). Another point related to using higher order OSRCs is that we would have to refine the sur-
face mesh just for doing the higher order OSRC (since it requires the solution of surface PDEs). It should be possible to relax
this point by using two different grids – a refined (d� 1)-dimensional grid for the OSRC computation, and a coarser d-dimen-
sional grid for solving (51)–(53). Interpolation between the two grids could for example be performed using an L2-projection
[18].

We begin by considering the same two concentric circular boundaries of Section 5.1. For a plane wave, the exact reference
solution u (and so A) is given as the linear superposition of the elementary reference solutions (using BGT2) of the previous
subsection for each harmonics. We plot on Figs. 7 and 8, respectively, the fields uh and Ah and the approximate phase e/. We
see that the finite element error is less important for the proposed formulation than for the classical formulation. Fig. 9 pre-
sents the error e2 with respect to the wavenumber k for two different discretization densities. This again shows that the error
is maintained for a fixed mesh as the wavenumber increases. The rate of convergence of the error for three different wave-
numbers is reported in Fig. 10. An admissible error can be obtained for low discretization densities or equivalently a higher
accuracy can be expected for a fixed density. Therefore, the pollution error is reduced significantly on this example. Finally,
Fig. 7. Neumann problem: real part of uh and the associated errors. The wave number is k ¼ 25 and the density is nk ¼ 20.



Fig. 8. Neumann problem: approximate phase function e/ and real parts of Ah and the associated errors. The wave number is k ¼ 25 and the density is
nk ¼ 20.

Fig. 9. Neumann problem: evolution of the error e2 with respect to the wave number k for two discretizations.
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we draw in Fig. 11 the RCS for k ¼ 25 and nk ¼ 3. We observe a much better prediction of the far-field for these parameters
when the PR-FEM is used. This is in particular clearly visible in the transition and shadow zones.

5.3. Scattering by sound-soft obstacles

Let us now consider the Dirichlet problem. In this case, the starter is given immediately from the trace of the wavefield
over C (see Fig. 12)

The first test-case is again related to the previous two concentric boundaries. We present at the top of Fig. 13 the com-
puted approximate phases using the low-order approximation (50) at k ¼ 25. Compared to the exact solution uh reported on
Fig. 12, we see that the complex amplitude Ah oscillates less than uh. We report on Fig. 14 the evolution of the error e2 with
respect to k for two densities of discretization points. We can see that, compared to the classical approach, the new PR-FEM
formulation even with a low-order model leads to significant accuracy improvements. Moreover, for both discretization den-
sities nk, the error appears to be almost constant, which means that the pollution error has been virtually eliminated. Fig. 15
presents the behavior of the error according to nk for three wavenumbers k ¼ 10, k ¼ 25 and k ¼ 50. Again, the benefits of the
new formulation are clearly visible: with 6 points per wavelength the relative error with the new formulation is comprised
between 2.7% and 5% whereas the error with the original formulation varies between 27% and 100%.



Fig. 10. Neumann problem: evolution of the error e2 with respect to the density of discretization points nk for three wave numbers k.
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We can expect similar gains in three dimensions. For example, the scattering problem by the unit sphere for a wavenum-
ber k ¼ 10 is considered on Fig. 16, where the traces of the fields are plotted in the planes ðOx1x2Þ and ðOx1x3Þ. We can see
that, indeed, the field based on the slowly varying envelope Ah oscillates less than with the physical scattered field uh.

To get a qualitative idea on how the PR-FEM method behaves on non-smooth geometries, we show in Fig. 17 the results
obtained for a thin plate under oblique plane wave incidence. The amplitude again clearly oscillates less than the original
unknown, even if the reduction in the number of oscillations is less than in the case of smooth scatterers. This might be
due to the low-order nature of the propagator. However, as shown in Fig. 18, the improvement is still substantial. For
nk ¼ 4, the maximum error is reduced by one order of magnitude with PR-FEM. This is also true for the Neumann problem,
where the low-order approximation used for the starter also plays a role.
11.Neumann problem: bistatic radar cross section fork¼
25 andnk

3.



Fig. 12. Dirichlet problem: real part of the original solution uh for k ¼ 25.

Fig. 13. Dirichlet problem: two different approximations of the phase of the complex-valued scattering solution for k ¼ 25. Left: schematic depiction of the
trajectories for the simple evolution equation (top) and for the eikonal equation (bottom). Middle and right: approximate phase e/ and real part of the
resulting amplitude Ah for the simple evolution equation (top) and for the eikonal equation (bottom).
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More elaborate techniques can be envisioned to approximate the phase /ðxÞ in the computational domain X. At the ex-
pense of costlier numerics, a prime candidate is to compute the phase by solving the eikonal equation



Fig. 14. Dirichlet problem: evolution of the error e2 with respect to the wavenumber k for two densities of discretization points per wavelength nk (nk ¼ 10
and nk ¼ 20).

Fig. 15. Dirichlet problem: evolution of the error e2 according to the density nk for three wavenumbers (k ¼ 10; k ¼ 25 and k ¼ 50).
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jr/ðxÞj2 ¼ 1; x 2 X; ð60Þ
i.e., by using the asymptotic geometrical optics solution to the Helmholtz equation [24]. Solving Eq. (60), we get a new
approximate phase e/ and slowly varying envelope Ah. These two fields are presented on the bottom of Fig. 13. We see that
the phase is close to the one expected from uh (see Fig. 12). The resulting field Ah therefore oscillates less than using the low-
order solution. To see the impact of improving the phase computation, we report in Fig. 19 the evolution of e2 according to
the wavenumber for two coarse grids. We see that for large wave numbers, the low-order model attains its limitation while a



Fig. 16. Dirichlet problem: sphere under plane wave incidence for k ¼ 10. Left: real part of the original solution uh . Middle and right: approximate phase e/h

and real part of the resulting amplitude Ah for the simple evolution equation.

Fig. 17. Dirichlet problem: plate under 45� plane wave incidence for k ¼ 25. Left: real part of the original solution uh . Middle and right: approximate phasee/h and real part of the resulting amplitude Ah for the simple evolution equation.

Fig. 18. Dirichlet problem: plate under 45� plane wave incidence for k ¼ 25 and nk ¼ 4. Left: absolute error between the reference solution u (computed
with nk ¼ 20) and the direct solution uh . Right: absolute error between the reference solution u and the PR-FEM solution.
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very satisfying error can be expected for a better approximation of the phase using e.g. the eikonal solution. The reason of the
limitation of the low-order model is that high-order harmonics must be considered to compute the solution, and we showed



Fig. 19. Dirichlet problem: evolution of the error e2 with respect to the wavenumber k for two densities of discretization points nk ¼ 2 and nk ¼ 4 using the
classical FEM, the PR-FEM with the low-order propagator and the eikonal equation.

Fig. 20. Dirichlet problem: evolution of the error e2 with respect to the wavenumber k (k ¼ 1 to k ¼ 256) using a fixed uniform mesh of 7592 triangles. The
results are presented for the classical FEM, the PR-FEM with the low-order propagator and the eikonal equation.
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in the mode-by-mode study developed in Section 5.1 that, indeed, high-order harmonics include larger errors for the low-
order model, resulting in limited accuracy of the solution for coarse meshes. As we will see in Section 6, high-order models
show great potential for computing an improved phase at very high frequencies for a low computational cost. Fig. 20
shows how the error evolves for a fixed mesh and increasing k. Again, a more accurate phase computation shows that an
improved accuracy can be expected. The advantages of the new formulation are clearly visible: for a prescribed tolerance,
the PR-FEM allows to solve the problem on much coarser grids than the original FEM, the error control depending on the
phase accuracy.
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6. Toward higher order models

We have seen in the previous section that an interesting accuracy improvement is obtained via the PR-FEM with a low-
order model even for relatively high wavenumbers. At the same time, we have also shown that an increased accuracy can be
expected if a better approximation of the phase is at hand, using for example the solution of the eikonal equation.

We show in this section that higher order propagative models in conjunction with an improved OSRCs can provide the
phase with high accuracy, both on the surface of the scatterer and in the computational domain, even for extremely large
frequencies. An example of such high-order models is proposed in [6] using BPM techniques. Here, we consider the micro-
local approximation given in Section 4 and test it in the case of the circular cylinder D0 with radius R0 ¼ 1 (see Section 5.1)
Fig. 21. Neumann problem: normalized exact solution at k ¼ 100.

Fig. 22. Choice of the starter: representation of R Aik;H

jAik;H j ðxÞ
� �

(left) and R A
p
;H

jA
p
;H j ðxÞ

� �
(right) for the Neumann problem. We can observe the effect of using the

low-order OSRC approximation BC ¼ ik or the high-order model BC ¼ p. Zooming shows the boundary layer related to the incorporation of creeping waves
in the OSRC model. This can affect the PR-FEM since a low-order OSRC would require a local remeshing to the surface for numerically capturing these
oscillations.
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where analytical formulae can be obtained using the mode-by-mode superposition of the solution to each problem. All the
results are presented for k ¼ 100 (see Fig. 21); tests for a similar configuration but with k ¼ 2000 for example lead to the
same conclusions.

Let us introduce the following notations. For a given boundary condition (related to an OSRC operator K) and an exterior
model (Helmholtz equation or propagator), we denote the corresponding solution by euBC;Model, where BC reflects the type of
boundary condition and Model the equation solved in the exterior domain:

� BC ¼ ik refers to the low-order OSRC (37) and BC ¼ ffip refers to the square-root OSRC (28);
� Model ¼ H refers to the Helmholtz equation, Model ¼ LOP refers to the low-order propagator (49) and Model ¼ HOP refers

to high-order propagator (48).

Using the same notations, the slowly varying amplitudes are defined by
Fig. 23
shows
Fig. 21)
for buil
ABC;Model ¼ uexacteuBC;Model
: ð61Þ
First, we test the effect of using an accurate starter based on high-order OSRCs. We report in Fig. 22 the normalized real
parts of the two solutions Aik;H (left) and A

p
;H (right). We can observe an interesting improvement if we use the OSRC based

on the square-root operator compared to the Sommerferld condition. This is particularly clear near the boundary where the
modeling of surface rays is crucial. The attenuated oscillations related to using a high-order OSRC implies that a coarser mesh
should be possible close to the boundary.

Second, we test the influence of the exterior propagation equation. We have seen in Section 4.1.2 that low and high-order
approximate propagators can be considered. We report in Fig. 23 the real parts of A

p
;LOP and A

p
;HOP. We see that using a low-

order model leads to a less oscillating solution than the initial field. However, visible oscillations remain, explaining the lim-
itations met in Section 5 when higher frequencies and/or coarser grids were considered. Using a high-order propagator
solves the problem and yields a very close solution to using the Helmholtz equation (see right part of Fig. 22). We can ob-
serve that even the field behavior near the boundary is satisfactory. We do not present here the numerical results obtained
by using the localized Padé version of the square-root operator, which are similar to those obtained by using the square-root
propagator.
. Choice of the propagator: effect of using the low-order (49) (left) or the high-order (48) propagator (right) for the Neumann problem. Zooming
the remaining oscillations close to the boundary for the low-order model. The solution is however much less oscillating than the true solution (see
. The behavior of the near-field is close to the one expected using the Helmholtz equation (see right pictures of Fig. 22). The high-order OSRC is used
ding the starter.
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Investigating PR-FEM solutions based on these two high-order generalizations shows therefore some great potential in
reducing pollution problems. This is beyond the scope of the present paper and will be the subject of a second part.

7. Conclusion

We have presented a procedure, dubbed PR-FEM, to gain significant accuracy in the finite element solution of time-har-
monic scattering problems at high wavenumbers. It is based on an a priori approximate determination of the phase of the
scattered wave using a starter/propagator technique together with a variational formulation in terms of the resulting slowly
varying envelope. Numerical tests on simple two- and three-dimensional convex scatterers using the lowest-order starter/
propagator model show that the technique reduces the pollution error and allows use of much coarser grids than the stan-
dard FEM. Contrary to competing approaches, the proposed method does not require any new finite element basis functions
and can thus be easily implemented in existing finite element codes. Finally, accurate phase computations based on high-
order starters and propagators show that improved solutions for large frequencies can be expected. This last aspect will
be analyzed in Part II of this paper.
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